Tektronix[®]

Measuring Gate Charge of a Device with ACS Software

APPLICATION NOTE

Introduction

Devices such as Power MOSFETs (metal-oxidesemiconductor field-effect transistors) and IGBTs (insulated-gate bipolar transistors) are used in a wide variety of applications. Power MOSFETs are the most widely used power device worldwide and are often utilized as highspeed switching devices for applications such as control modules in automotive electronics. IGBTs are the next most widely used power device for switching and amplification applications, second only to Power MOSFETs. Both MOSFETs and IGBTs are three terminal devices used in switching and signal amplification. A MOSFET's terminals include the source (S), gate (G), drain (D) and occasionally the body as a fourth terminal when its not connected to the source. The terminals of an IGBT are the emitter (E), gate (G), and collector (C). Despite the similarities in their usage, MOSFETs and IGBTs operate differently. For example, IGBTs can handle very high voltage and power, while MOSFETs are better for very high frequency applications. As a result, the turn off time and switching speed of a MOSFET is quicker, but an IGBT produces lower forward voltage drop and can accommodate transient voltage and current.

Figure 1: A comparison of the structure of a Power MOSFET and an IGBT¹

^{1.} Wilson & Laud, 2014

Much of this application note will reference MOSFETs, but most of the content therein also applies to IGBTs. Simply swap "drain" with "collector" and "source" with "emitter."

The switching speed of the device is affected by internal capacitances and are typically specified in data sheets, but the gate charges (Q_{gs} and Q_{gd}) can also be used to assess the switching performance of a MOSFET or IGBT.

One method of measuring the gate charge of a MOSFET is by forcing a gate current while the gate to source voltage is measured as a function of time. From the resulting gate voltage waveform, the gate-source charge (Qgs), gate-drain charge (Q_{qd}), and gate charge (Q_q) are obtained.

The Keithley Automated Characterization Suite (ACS) software supports making gate charge measurements on MOSFETs using two source measure unit (SMU) instruments and the gateCharge.py Python Test Module (PTM) that is included with the software. This test is one of many included in the extensive test libraries provided in the ACS Software Suite.

Gate Charge Measurements

In the Gate Charge Method, a fixed test current (I_g) is forced into the gate of a MOS transistor and the measured gate source voltage (V_{gs}) is plotted against the charge flowing into the gate. A fixed voltage bias is applied to the drain terminal. **Figure 2** shows the gate voltage vs. gate charge of a power MOSFET.

Figure 2: Typical gate voltage vs. gate charge of power MOSFET.

The gate charge (Q) is derived from the forced gate current and time, (I_g dt). The gate-source charge (Qgs) is the charge required, as shown in **Figure 2**, to reach the beginning of the plateau region where the voltage (V_{gs}) is almost constant. The plateau (or Miller) voltage (V_{pl}) is defined, according to the JEDEC standard, as the gate-source voltage when dV_{gs} /dt is at a minimum. The voltage plateau is the region when the transistor is switching from the OFF state to the ON state. The gate charge required to complete this switching, that is the charge needed to switch the device from the beginning of the plateau region to the end, is defined as gate-drain charge (Q_{gd}) and is known as the Miller charge. The gate charge (Q_g) is the charge from the origin to the point where the gate-source voltage (V_{gs}) is equal to a specified maximum (V_{qsMax}).

S1 is the slope of the line segment from the origin to the first plateau point. S2 is the slope of the line segment from the last plateau point to the specified maximum gate voltage (V_{gsMax}). The slopes are used to calculate Q_{gs} and Q_{gd} , as specified in the JESD24-2 standard.

Figure 3 shows typical gate and drain waveforms as a function of time. As current is forced to the gate, V_{gs} increases until it reaches the threshold voltage. At this point, the drain current (I_d) begins to flow. When C_{gs} is charged up at time t1, I_d stays constant and the drain voltage (V_d) decreases. V_{gs} remains constant until it reaches the end of the plateau. Once C_{gd} is charged at time t2, the gate-source voltage (V_{gs}) starts to increase again until it reaches the specified maximum gate voltage (V_{gsMax}).

Figure 3: V_{gs} , V_d , and I_d vs. time of MOSFET.

Gate Charge Measurement Test Setup

Two SMUs are used to measure gate charge with ACS software. **Figure 4** illustrates a basic circuit diagram of the gate charge test. SMU1 is connected to the gate terminal of the MOSFET and forces the gate current (I_g) while measuring the gate-source voltage (V_{gs}) as a function of time. Meanwhile, SMU2 applies a fixed voltage (V_{ds}) to the drain at a specified current compliance (I_{ds}) .

While the test is running, the gate voltage increases and causes the MOSFET to enter its ON state. During this transition, the drain SMU (SMU2) switches from voltage control to the current control mode, because the current exceeds the specified compliance level. The software returns the measured drain current transients and drain voltage during the transition from the OFF state to the ON state.

The MOSFET's source terminal is connected to the Force LO terminal or ground.

ACS Software Configuration

The Gate Charge test can be accessed by adding a device to the project tree, selecting it, and clicking "New PTM." From there, click the import button and select "gateCharge.py" from the PTM Library using the file explorer. This will add the gate charge test to the project tree below the device under test.

The gate charge PTM is compatible with 26xx Series SMUs and S4200 SMUs.

💊 🧼 🖺 🕨 🕨			PTM: tm_ptr	m		
Wafer Description		Setup Data Status				
🧟 Test Setup		User Module gc				×
Patterns Pettern,1 Pattern,1 Pattern,1		Input gateSMU SMU1 drainSMU SMU2 source GNDU Vds 10 drainLimitl 0.01 gateCurrent 1e-08 VgsMax 20 timeOut 60 messDrain 1 Coffset 0		Dutput gate_charge timeArray VgCharge VdArray IdArray Slope Ceff Vpl T1 T1 T2	gate_charge timeArray VgArray VgCharge VdArray IdArray Slope Ceff VpI T1 T2	Description Value [Description 1 [No Errors -1 [Gate SMU is not present -2 [Drain SMU is not present -2 [Drain SMU is not present -3 [VgsMax > 200V -4 [drain] exceeds 1A (HP SMU) or 100mA (MP SMU) -5 [Power limit exceeded. Decrease drain or drainV. -6 [timeOut is out of range set timeOut < 300s -7 [Test time exceeds specified time out. -8 [Number of iterations > 1000. Increase gate current. -10 [Number of iterations > 1000. Increase gate current. -11 [Forc aclculating slope, S1. Curve not linear. Check test set-up and device. } }
Prober Control Prober Control Automation Statistic Statistic Summary Report		Script GUI		Import	Save Check	 12 [Error calculating slope, S2. Curve not linear. Check test set-up. Reduce gate current. 13 [Vds > 200V. Decrease drain voltage. 14 [gateCurrent > 1e-5 A. Decrease gate current. -999 Stop Check

Figure 5: gateCharge.py PTM in use with a Power MOSFET.

Figure 4: Gate charge measurement test setup.

Input Parameters

Before test execution, the input test parameters are entered in the Input table in the Setup tab. The ideal input parameters will vary depending on the device and which model of SMU is used.

Descriptions of the input parameters are listed in **Table 1**. First, enter the SMU numbers that are connected to the gate (gateSMU) and drain (drainSMU) of the MOSFET. The source terminal should always be connected to the GNDU, or Force LO.

The magnitude of the current forced to the gate by the gateSMU, is the gateCurrent (I_g) parameter. The drain voltage (V_{ds}) is the bias voltage applied to the drain and drainLimitI is the compliance current (I_{ds}) of the drain SMU.

The Coffset parameter is used for correcting for the offset capacitance.

Input Parameter	Default Values	Description
gateSMU	SMU1	The SMU number connected to the gate terminal
drainSMU	SMU2	The SMU number connected to the drain terminal
source	GNDU	The source terminal is always connected to the Force LO terminal on GNDU
Vds	10V	The magnitude of the drain bias voltage of the drain SMU
drainLimitl	0.01A	Current compliance of the drain SMU
gateCurrent	1e-08A	The magnitude of the gate current of the gate SMU
VgsMax	20V	The maximum voltage level of the gate SMU
timeOut	60s	The number of seconds prior to a time out
measDrain	1	Return measured drain current 1 (yes) or O (no)
Coffset	0	Run test with open circuit and then enter Ceff value returned to the Sheet

Table 1: Input Parameters for gateCharge.py PTM

Correcting Offset Capacitances

Depending on the cabling and connections of the measurement system, the offset capacitance can be in the single picofarads to hundreds of picofarads ranges. These capacitances can be corrected by executing the gateCharge.py PTM with an open circuit, obtaining the offset capacitance (Ceff), then entering in the offset capacitance value (Coffset) in the software for compensation. First, measure the offset capacitance. Set up the test parameters including the input gate current as though the device were connected to the SMUs but increase the V_{gsMax} just for the Ceff measurement. Before running the test, lift the probes or remove the device from the test fixture. Run the test with an open circuit.

Next, get the offset capacitance. After the test is finished running with an open circuit, the measured offset capacitance of the system is calculated and appears in the Ceff column in the Data Tab. Ceff is derived from the maximum gate voltage, gate current, and time.

A Test Status Value of -9 or -12 may appear after the test is executed during this step. This is because no device is measured and the circuit is open so there is no plateau region. However, the Ceff value is correct and can be entered as the Coffset value in the Input Table in the Setup Tab.

Once the measured offset capacitance is entered, run the test.

Test Execution

Once the input parameters have been entered into the Input Table in the Setup Tab, execute the test by clicking the Run Button at the top of the screen. While the test runs, the gate charge waveform will update in real time in the Plot and the waveform and the calculated output parameters will both appear in the Data Tab. **Figure 6** shows the inputs used for this application:

-	Input							
	gateSMU	SMU1						
	drainSMU	SMU4						
	source	GNDU						
	Vds	10						
	drainLimitl	0.1						
	gateCurrent	1.5e-08						
	VgsMax	10						
	timeOut	10						
	measDrain	1						
	Coffset	2.89744789679e-11						

Figure 6: Input Table populated with values for this application and Coffset value

Output Parameters

After the test is completed, several parameters are output to the Data Tab. **Table 2** lists the descriptions of these parameters. **Figures 7 and 8** show the contents of the Data Tab and the Plot after the test is executed.

Data					(O Plot and Data	O Plot Only	◉ Data Only	☐ Ma	nual Refresh				
ATA														
		В	C(Y1)	D(X)	E(Y1)	F(Y2)	G	н	1	J	к	L	м	N
1	e	timeArray	VgArray	VgCharge	VdArray	IdArray	Slope	Ceff	Vpl	T1	T2	Qgs	Qgd	Qg
2		1.67356e-1	2.29216e-1	1.73663822064e-	9.96983	1.9327e-6	0	1.16101728688e-	3.16684	1.42874	2.73031	2.06554900597e-	2.12332495555e	1.15074692843e
3		2.12794e-1	3.30098e-1	2.41528521725e-	9.97518	-4.36547e-6	2.418683541							
4		2.5933e-1	4.51672e-1	3.10980267394e-	9.98677	-4.36547e-6	2.62213211518							
5		2.90726e-1	5.34446e-1	3.57834434042e-	9.98409	-4.36547e-6	2.75418649884							
6		3.22569e-1	6.25844e-1	4.05334113099e-	9.98766	-2.95582e-5	2.4004786036							
7		3.54662e-1	6.87923e-1	4.53293742431e-	9.97874	-4.36547e-6	2.14737563041							
8		3.86813e-1	7.638e-1	5.01300392777e-	9.9734	-2.95582e-5	2.201118815							
9		4.18122e-1	8.27606e-1	5.48079018217e-	9.98855	-4.21545e-5	2.49947438838							
10		4.49597e-1	9.20727e-1	5.95021704971e-	9.98588	-2.95582e-5	2.61448870845							
11		4.96942e-1	1.03368	6.65711929539e-	9.9832	-7.36454e-5	2.24316222014							
12		5.6568e-1	1.18112	7.68391729821e-	9.97696	-1.69618e-5	2.2554058519							
13		6.05898e-1	1.27942	8.28433910693e-	9.98498	-3.58564e-5	2.65319253095							
14		6.37175e-1	1.37081	8.75084612929e-	9.98142	8.23088e-6	2.16451110617							
15		6.68836e-1	1.41565	9.22446191366e-	9.97964	3.34236e-5	2.02289338335							
16		7.14752e-1	1.52774	9.90995416431e-	9.99657	1.40493e-4	2.43465410548							
17		7.44625e-1	1.60017	1.03559505428e-	9.98142	2.03474e-4	2.37856324713							
18		7.76739e-1	1.67518	1.08354871671e-	9.97874	4.36507e-4	2.09909921454							
19		8.22668e-1	1.76399	1.15218489437e-	9.98766	7.57714e-4	2.24259566306							
20		9.60016e-1	1 88212	1 22136/61885e	0 00122	1 34974e-3	2 27201//30023							

Figure 7: Test Data as shown in the Data Tab

Figure 8: Plot illustrating $V_{g^{\prime}}$ $V_{d^{\prime}}$ and I_d vs $V_gCharge$ in coulombs

Output Parameter	Description
gate_charge	Test status values – see Table 3 for descriptions
timeArray	Measured time (seconds)
VgArray	Measured gate-source voltage (volts)
VgCharge	Measured gate charge (coulombs)
VdArray	Measured drain voltage (volts)
IdArray	Measured drain current (amps)
Slope	Dynamic slope (dVg/dt) of gate voltage
Ceff	Ratio of gate charge to maximum gate voltage
Vpl	Plateau or Miller voltage (volts)
T1	Timestamp where the plateau area begins (seconds
T2	Timestamp where the plateau area ends (seconds)
Qgs	Gate charge from the origin to the first inflection point, or the voltage plateau (coulombs)
Qgd	Gate charge between the two inflection points in the gate charge curve (coulombs)
Qg	Gate charge from the origin to VgsMax (coulombs)

Table 2: Output Parameters for gateCharge.py PTM

Checking the Test Status

Each time the test is run, a Test Status Value is returned to the first column in the Data Tab, titled: "gate_ charge". **Table 3** lists the Test Status Values that may appear in the "gate_charge" column and their corresponding descriptions.

Test Status	Description
1	No Errors
-1	Gate SMU is not present
-2	Drain SMU is not present
-3	VgsMax > 200V
-4	drainl exceeds 1A (HP SMU) or 100mA (MP SMU)
-5	Power limit exceeded. Decrease drainl or drainV.
-6	timeOut is out of range; set timeOut < 300s
-7	Test time exceeds specified time out.
-8	Number of iterations >10000. Increase gate current.
-9	Number of iterations <5. Decrease gate current.
-10	Number of points from origin to first plateau point is <10. Decrease gate current.
-11	Error calculating slope, S1. Curve not linear. Check test set-up and device.
-12	Error calculating slope, S2. Curve not linear. Check test set-up. Reduce gate current.
-13	Vds > 200V. Decrease drain voltage.
-14	gateCurrent > 1e-5 A. Decrease gate current.

Table 3: Test Status Values

Conclusion

The inclusion of gate charge measurements in ACS software allows for the quality of devices such as power MOSFETs and IGBTs to be verified and validated with the ease and convenience of software. This no code solution to gate charge measurements also allows for easy viewing of data and the graph. With ACS Standard 6.2 or the Wafer Level Reliability edition, gate charge measurement tests can be used to verify the switching speed of devices at the wafer level.

Contact Information:

Australia 1800 709 465 Austria* 00800 2255 4835 Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Belgium* 00800 2255 4835 Brazil +55 (11) 3530-8901 Canada 1800 833 9200 Central East Europe / Baltics +41 52 675 3777 Central Europe / Greece +41 52 675 3777 Denmark +45 80 88 1401 Finland +41 52 675 3777 France* 00800 2255 4835 Germany* 00800 2255 4835 Hong Kong 400 820 5835 India 000 800 650 1835 Indonesia 007 803 601 5249 Italy 00800 2255 4835 Japan 81(3)6714 3086 Luxembourg +41 52 675 3777 Malaysia 1800 22 55835 Mexico, Central/South America and Caribbean 52 (55) 88 69 35 25 Middle East, Asia, and North Africa +41 52 675 3777 The Netherlands* 00800 2255 4835 New Zealand 0800 800 238 Norway 800 16098 People's Republic of China 400 820 5835 Philippines 1 800 1601 0077 Poland +41 52 675 3777 Portugal 80 08 12370 Republic of Korea +82 2 565 1455 Russia / CIS +7 (495) 6647564 Singapore 800 6011 473 South Africa +41 52 675 3777 Spain* 00800 2255 4835 Sweden* 00800 2255 4835 Switzerland* 00800 2255 4835 Taiwan 886(2)26566688 Thailand 1800 011 931 United Kingdom / Ireland* 00800 2255 4835 USA 1800 833 9200 Vietnam 12060128

> * European toll-free number. If not accessible, call: +41 52 675 3777 Rev. 02.2022

Find more valuable resources at <u>TEK.COM</u>

Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies. 020823 SBG 11KW-73985-0

